Search results for "Physiology and Biotechnology"

showing 10 items of 11 documents

Involvement of acyl coenzyme A oxidase isozymes in biotransformation of methyl ricinoleate into gamma-decalactone by Yarrowia lipolytica.

2000

ABSTRACT We reported previously on the function of acyl coenzyme A (acyl-CoA) oxidase isozymes in the yeast Yarrowia lipolytica by investigating strains disrupted in one or several acyl-CoA oxidase-encoding genes ( POX1 through POX5 ) (H. Wang et al., J. Bacteriol. 181:5140–5148, 1999). Here, these mutants were studied for lactone production. Monodisrupted strains produced similar levels of lactone as the wild-type strain (50 mg/liter) except for Δ pox3 , which produced 220 mg of γ-decalactone per liter after 24 h. The Δ pox2 Δpox3 double-disrupted strain, although slightly affected in growth, produced about 150 mg of lactone per liter, indicating that Aox2p was not essential for the biotra…

Applied Microbiology and BiotechnologyIsozymeLactonesMESH : BiotransformationBiotransformation[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAcyl-CoA oxidase[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Oxidoreductases[INFO.INFO-BT]Computer Science [cs]/BiotechnologyMESH: Saccharomycetales[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyComputingMilieux_MISCELLANEOUSBiotransformationchemistry.chemical_classificationMESH : Isoenzymes[SDV.EE]Life Sciences [q-bio]/Ecology environmentMESH: BiotransformationOxidase testEcologyStrain (chemistry)biologyChemistryMESH: Acyl-CoA OxidaseYarrowiaMESH : SaccharomycetalesACYLCOENZYME Abiology.organism_classificationMESH : OxidoreductasesPhysiology and BiotechnologyYeastMESH : LactonesMESH: Ricinoleic AcidsIsoenzymes[INFO.INFO-BT] Computer Science [cs]/BiotechnologyBiochemistryMESH : Ricinoleic AcidsSaccharomycetalesMESH: IsoenzymesMESH : Acyl-CoA OxidaseAcyl-CoA OxidaseOxidoreductasesRicinoleic AcidsLactone[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: LactonesFood ScienceBiotechnology
researchProduct

Yeast Population Dynamics during the Fermentation and Biological Aging of Sherry Wines

2001

ABSTRACTMolecular and physiological analyses were used to study the evolution of the yeast population, from alcoholic fermentation to biological aging in the process of “fino” sherry wine making. The four races of “flor”Saccharomyces cerevisiae (beticus, cheresiensis, montuliensis, androuxii) exhibited identical restriction patterns for the region spanning the internal transcribed spacers 1 and 2 (ITS-1 and ITS-2) and the 5.8S rRNA gene, but this pattern was different, from those exhibited by non-florS. cerevisiaestrains. This flor-specific pattern was detected only after wines were fortified, never during alcoholic fermentation, and all the strains isolated from the velum exhibited the typ…

DNA BacterialRestriction MappingPopulationFlorWineSaccharomyces cerevisiaeEthanol fermentationBiologyDNA MitochondrialApplied Microbiology and BiotechnologyIndustrial MicrobiologyDNA Ribosomal SpacerBotanyFood scienceeducationEcosystemWineeducation.field_of_studyEcologyAging of winefood and beveragesPhysiology and BiotechnologyYeastRNA Ribosomal 5.8SYeast in winemakingKaryotypingFermentationFermentationPolymorphism Restriction Fragment LengthFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Damage in Escherichia coli Cells Treated with a Combination of High Hydrostatic Pressure and Subzero Temperature

2007

ABSTRACT The relationship between membrane permeability, changes in ultrastructure, and inactivation in Escherichia coli strain K-12TG1 cells subjected to high hydrostatic pressure treatment at room and subzero temperatures was studied. Propidium iodide staining performed before and after pressure treatment made it possible to distinguish between reversible and irreversible pressure-mediated cell membrane permeabilization. Changes in cell ultrastructure were studied using transmission electron microscopy (TEM), which showed noticeable condensation of nucleoids and aggregation of cytosolic proteins in cells fixed after decompression. A novel technique used to mix fixation reagents with the c…

Cell Membrane PermeabilityMembrane permeability[SDV]Life Sciences [q-bio]CellHydrostatic pressureColony Count MicrobialApplied Microbiology and BiotechnologyCell membrane03 medical and health scienceschemistry.chemical_compound[SPI]Engineering Sciences [physics]Microscopy Electron TransmissionFreezing[ SPI ] Engineering Sciences [physics]medicineHydrostatic PressureNucleoidPropidium iodideComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciences[ SDV ] Life Sciences [q-bio]EcologyEscherichia coli K12030306 microbiologyTemperaturePhysiology and BiotechnologyCulture MediaCytosolmedicine.anatomical_structurechemistryBiochemistryMicroscopy FluorescenceBiophysicsUltrastructureFood ScienceBiotechnology
researchProduct

Selection of single-chain antibodies against the VP8* subunit of rotavirus VP4 outer capsid protein and their expression in Lactobacillus casei.

2004

ABSTRACTSingle-chain antibodies (scFv) recognizing the VP8* fraction of rotavirus outer capsid and blocking rotavirus infection in vitro were isolated by phage display. Vectors for the extracellular expression inLactobacillus caseiof one of the scFv were constructed.L. caseiwas able to secrete active scFv to the growth medium, showing the potential of probiotic bacteria to be engineered to express molecules suitable for in vivo antirotavirus therapies.

RotavirusLactobacillus caseiPhage displayvirusesMolecular Sequence Datachemical and pharmacologic phenomenamedicine.disease_causeAntibodies ViralApplied Microbiology and BiotechnologyVirusMicrobiologyCell Linefluids and secretionsPeptide LibraryRotavirusmedicineHumansAmino Acid SequencePeptide libraryEcologybiologyfood and beveragesrespiratory systembiology.organism_classificationPhysiology and BiotechnologyVirologyComplementarity Determining RegionsIn vitroCulture MediaLacticaseibacillus caseiCapsidCapsid ProteinsSingle-Chain AntibodiesFood ScienceBiotechnologyApplied and environmental microbiology
researchProduct

Monitoring Stress-Related Genes during the Process of Biomass Propagation of Saccharomyces cerevisiae Strains Used for Wine Making

2005

ABSTRACT Physiological capabilities and fermentation performance of Saccharomyces cerevisiae strains to be employed during industrial wine fermentations are critical for the quality of the final product. During the process of biomass propagation, yeast cells are dynamically exposed to a mixed and interrelated group of known stresses such as osmotic, oxidative, thermic, and/or starvation. These stressing conditions can dramatically affect the parameters of the fermentation process and the technological abilities of the yeast, e.g., the biomass yield and its fermentative capacity. Although a good knowledge exists of the behavior of S. cerevisiae under laboratory conditions, insufficient knowl…

Saccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeBiomassWineSaccharomyces cerevisiaeOxidative phosphorylationApplied Microbiology and BiotechnologyOsmotic PressureGene Expression Regulation FungalOsmotic pressureBiomassFood scienceWineEcologybiologybusiness.industryfood and beveragesPhysiology and Biotechnologybiology.organism_classificationYeastCulture MediaBiotechnologyOxidative StressYeast in winemakingFermentationFermentationbusinessHeat-Shock ResponseFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Transcriptomic and Proteomic Approach for Understanding the Molecular Basis of Adaptation of Saccharomyces cerevisiae to Wine Fermentation

2006

ABSTRACT Throughout alcoholic fermentation, Saccharomyces cerevisiae cells have to cope with several stress conditions that could affect their growth and viability. In addition, the metabolic activity of yeast cells during this process leads to the production of secondary compounds that contribute to the organoleptic properties of the resulting wine. Commercial strains have been selected during the last decades for inoculation into the must to carry out the alcoholic fermentation on the basis of physiological traits, but little is known about the molecular basis of the fermentative behavior of these strains. In this work, we present the first transcriptomic and proteomic comparison between …

Saccharomyces cerevisiae ProteinsProteomeTranscription GeneticSaccharomyces cerevisiaeSulfur metabolismWineSaccharomyces cerevisiaeEthanol fermentationBiologyApplied Microbiology and BiotechnologyGene Expression Regulation FungalHeat shock proteinFermentation in winemakingWineEcologyGene Expression ProfilingPhysiology and Biotechnologybiology.organism_classificationAdaptation PhysiologicalYeastBiochemistryFermentationFermentationHeat-Shock ResponseFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Pyruvate fermentation by Oenococcus oeni and Leuconostoc mesenteroides and role of pyruvate dehydrogenase in anaerobic fermentation.

2005

ABSTRACT The heterofermentative lactic acid bacteria Oenococcus oeni and Leuconostoc mesenteroides are able to grow by fermentation of pyruvate as the carbon source (2 pyruvate → 1 lactate + 1 acetate + 1 CO 2 ). The growth yields amount to 4.0 and 5.3 g (dry weight)/mol of pyruvate, respectively, suggesting formation of 0.5 mol ATP/mol pyruvate. Pyruvate is oxidatively decarboxylated by pyruvate dehydrogenase to acetyl coenzyme A, which is then converted to acetate, yielding 1 mol of ATP. For NADH reoxidation, one further pyruvate molecule is reduced to lactate. The enzymes of the pathway were present after growth on pyruvate, and genome analysis showed the presence of the corresponding st…

Pyruvate decarboxylationPyruvate dehydrogenase kinaseEcologyPyruvate Dehydrogenase ComplexPyruvate dehydrogenase phosphataseBiologyPyruvate dehydrogenase complexPhysiology and BiotechnologyApplied Microbiology and BiotechnologyPyruvate carboxylaseCulture MediaGram-Positive CocciBiochemistryPyruvate oxidase activityFermentationPyruvic AcidFermentationAnaerobiosisDihydrolipoyl transacetylaseLeuconostocFood ScienceBiotechnologyApplied and environmental microbiology
researchProduct

Transcriptional Response of Saccharomyces cerevisiae to Different Nitrogen Concentrations during Alcoholic Fermentation▿ †

2007

Gene expression profiles of a wine strain of Saccharomyces cerevisiae PYCC4072 were monitored during alcoholic fermentations with three different nitrogen supplies: (i) control fermentation (with enough nitrogen to complete sugar fermentation), (ii) nitrogen-limiting fermentation, and (iii) the addition of nitrogen to the nitrogen-limiting fermentation (refed fermentation). Approximately 70% of the yeast transcriptome was altered in at least one of the fermentation stages studied, revealing the continuous adjustment of yeast cells to stressful conditions. Nitrogen concentration had a decisive effect on gene expression during fermentation. The largest changes in transcription profiles were o…

:Biotecnologia Agrária e Alimentar [Ciências Agrárias]Ciências Agrárias::Biotecnologia Agrária e AlimentarNitrogenSaccharomyces cerevisiaeWineOxidative phosphorylationSaccharomyces cerevisiaeEthanol fermentationApplied Microbiology and BiotechnologySaccharomyces03 medical and health sciencesSaccharomycesTranscripció genèticaGene Expression Regulation FungalExpressió genèticaCluster AnalysisGlycolysis030304 developmental biologyDNA Primers0303 health sciencesScience & TechnologyEcologybiologyEthanol030306 microbiologyReverse Transcriptase Polymerase Chain ReactionGene Expression Profilingfood and beveragesbiology.organism_classificationPhysiology and BiotechnologyYeastRegulonBiochemistryFermentationFermentationFood ScienceBiotechnology
researchProduct

Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation

2007

Genome-wide analysis of the wine yeast strain Saccharomyces cerevisiae PYCC4072 identified 36 genes highly expressed under conditions of low or absent nitrogen in comparison with a nitrogen-replete condition. Reverse transcription-PCR analysis for four of these transcripts with this strain and its validation with another wine yeast strain underlines the usefulness of these signature genes for predicting nitrogen deficiency and therefore the diagnosis of wine stuck/sluggish fermentations.

Ciências Agrárias::Biotecnologia Agrária e Alimentar:Biotecnologia Agrária e Alimentar [Ciências Agrárias]Saccharomyces cerevisiae ProteinsNitrogenSaccharomyces cerevisiaeGenes FungalSaccharomyces cerevisiaeEthanol fermentationBiologyApplied Microbiology and BiotechnologySaccharomycesGenètica molecular03 medical and health sciencesSaccharomycesGene Expression Regulation Fungal030304 developmental biologyOligonucleotide Array Sequence AnalysisWineGenetics0303 health sciencesScience & TechnologyEcologyModels Genetic030306 microbiologyNitrogen deficiencyReverse Transcriptase Polymerase Chain Reactionfood and beveragesbiology.organism_classificationPhysiology and BiotechnologyYeastYeast in winemakingBiochemistryAlcoholsFermentationFermentationFood ScienceBiotechnology
researchProduct

Engineering a Saccharomyces cerevisiae Wine Yeast That Exhibits Reduced Ethanol Production during Fermentation under Controlled Microoxygenation Cond…

2006

ABSTRACTWe recently showed that expressing an H2O-NADH oxidase inSaccharomyces cerevisiaedrastically reduces the intracellular NADH concentration and substantially alters the distribution of metabolic fluxes in the cell. Although the engineered strain produces a reduced amount of ethanol, a high level of acetaldehyde accumulates early in the process (1 g/liter), impairing growth and fermentation performance. To overcome these undesirable effects, we carried out a comprehensive analysis of the impact of oxygen on the metabolic network of the same NADH oxidase-expressing strain. While reducing the oxygen transfer rate led to a gradual recovery of the growth and fermentation performance, its i…

[SDV]Life Sciences [q-bio]Saccharomyces cerevisiaeWineMICROOXYGENATIONEthanol fermentationBiologyApplied Microbiology and Biotechnology03 medical and health scienceschemistry.chemical_compoundOxygen ConsumptionMultienzyme ComplexesETHANOLNADPHEthanol fuelNADH NADPH Oxidoreductases030304 developmental biologySACCHAROMYCES CEREVISIAE0303 health sciencesEcology030306 microbiologyAcetaldehydebiology.organism_classificationPhysiology and BiotechnologyMicrooxygenationYeastRecombinant ProteinsLactococcus lactisYeast in winemakingKineticsGlucosechemistryBiochemistryGenes BacterialFermentationWINE YEASTFermentationGenetic EngineeringFood ScienceBiotechnology
researchProduct